
J. Fluid Mech. (1994), 001. 258, pp .  1-29 
Copyright 0 1994 Cambridge University Press 

1 

Low-dimensional description of free-shear-flow 
coherent structures and their dynamical behaviour 

By MOJTABA RAJAEE, STURE K. F. KARLSSON 
A N D  LAWRENCE SIROVICH 

Center for Fluid Mechanics and the Division of Engineering, Brown University, Providence, 
R1 02912, USA 

(Received 16 June 1992 and in revised form 28 May 1993) 

The snapshot form of the Karhunen-Loeve (K-L) expansion has been applied to two- 
dimensional, two-component hot-wire data from the region of a weakly perturbed free 
shear layer that includes the first pairing process. Low-level external perturbation was 
provided by a loudspeaker driven by a computer-generated signal composed of two 
sine waves of equal amplitude at the frequencies of the naturally developing 
fundamental instability wave and its first subharmonic, separated by a controllable 
initial phase angle difference. It was found that a large fraction of the fluctuation 
energy is carried by the first few modes. A low-dimensional empirical eigenfunction 
space is obtained which describes the shear-flow coherent structures well. Galerkin 
projection of the Navier-Stokes equations onto this basis set of principal eigenfunction 
modes results in a low-order system of dynamical equations, and solution of this 
system of equations describes the dynamics of the coherent structures associated with 
eigenfunctions. Finally the simulation, as obtained from the system of dynamical 
equations, is shown to compare reasonably well with the experiments. 

1. Introduction 
Large-scale coherent structures in free shear layers have been the subject of many 

studies (see Ho & Huerre 1984 for a comprehensive review) owing to their important 
role in mixing, entrainment and the laminar-turbulent transition processes. Large- 
scale coherent vortical structures were first observed by Brown & Roshko (1974) using 
a flow visualization technique, and their role in the entrainment process was 
investigated using flow visualizations by Dimotakis & Brown (1976). Further studies 
by Winant & Browand (1974), using flow visualizations, Browand & Wiedman (1976), 
using conditional sampling of detector probes, and Ho & Huang (1982), using 
conditional sampling and flow visualizations, provided comprehensive experimental 
information on the pairing mechanism of these large-scale structures. 

In our laboratory, Yang & Karlsson (1991) employed a phase-locked conditional 
sampling technique by using the subharmonic component of the driving signal as a 
timing reference for phase averaging of the hot-wire data at specific phases of the 
driving signal. They were able to use the time-sequence conditionally sampled data to 
demonstrate two distinct types of vortex interaction, pairing and tearing, depending on 
the driving phase angle difference between the subharmonic and the fundamental 
frequency components of the driving signal. However, the fluctuation field of the 
disturbances at the frequencies which are not harmonics of the subharmonic instability 
mode, as well as the contribution from the irregularities such as phase jitter, were 
averaged out by the phase-averaging technique. 
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Later work (Rajaee & Karlsson 1992), using a Fourier space decomposition of the 
free-shear-flow measurements, revealed the relation between the measured data in the 
frequency space and the evolution of large-scale vortical structures. We were able to 
show that relatively few instability modes contain most of the fluctuation energy. 
However, downstream of the first pairing event, the flow tends to become chaotic in a 
manner involving phase jitter and higher-frequency fluctuations. Because of the phase 
jitter, difficulties arise in the use of phase averaging and Fourier methods. Use of the 
Karhunen-Lokve decomposition was found to overcome the deficiencies of the former 
methods in handling the more chaotic stages of the flow (Rajaee 1991). By this method 
one does not have to impose any condition on sampling the data or discard any 
information. In other words, the results are not filtered in any way. The only constraint 
involved depends on the percentile of energy of the fluctuation field one wants to 
recover. This method provides a means of studying the non-coherent structures of the 
flow, including the jitters and small-scale structures, and their relation to the large-scale 
coherent structures. It provides information on the origin of their development and 
growth as well as their energy contribution. This method results in saving the entire 
flow field information in a basis set of eigenfunctions and their corresponding 
dynamical coefficients, or a system of dynamical equations, from which the flow field 
can be easily reconstructed for different initial conditions. This results in a means of 
control and management of the flow. 

The K-L expansion has been applied to a variety of problems in different fields for 
decades (see Preisendofer 1988; Sirovich 1991 ; and Sirovich & Everson 1992 for early 
references). Its application to problems involving fluids goes back to Fukuoka (1951), 
Lorenz (1956) and White et al. (1958), and it is known under the name of empirical 
orthogonalfunctions in statistical weather forecasting. Later, this method was employed 
for the combined representation of three climatic variables and referred to as the 
empirical eigenvectors by Kutzbach (1967). Lumley (1967) suggested that the procedure 
might be used in fluid mechanics to quantify the notion of coherent structures. The 
basic idea is that spatial velocity correlations be orthogonally decomposed as a rational 
and quantitative method of identifying coherent structures which leads to the 
eigenfunction-eigenvalue problem, 

J R,,.(x, x’) $T(x’) dx‘ = A(n)$jn)(x), 

where the kernel, R, is the two-point correlation matrix 

R,,(x, x’) = u,(x) u,.(x’), 

and $(“)(x) are the eigenfunctions representing the structures of the organized motions. 
This way of extracting organized structures is based upon an energy-weighted measure ; 
that is, the structures are those that contribute most to the energy. This representation 
is known in the literature of probability theory as the ‘proper orthogonal 
decomposition theorem’ (Loeve 1955; Lumley 1981). In pattern recognition, it is 
known as the Karhunen-Loeve expansion (Ash 1975; Fukunaga 1972) and as factor 
or principal-component analysis in the statistical literature (Ahmed & Goldstein 1975). 

This method has been applied to a number of problems in turbulent flow, including 
boundary-layer flow by Bakewell & Lumley (1967), wake flows by Payne & Lumley 
(1967) and the numerical simulation of turbulent channel flows by Moin (1984). It has 
been applied to experimental data information of a turbulent jet mixing layer by 
Glauser, Lieb & George (1985) as well as of the near-wall region of turbulent pipe flow 
(Herzog 1986). It has also been applied to a forced mixing layer (Glezer, Kadioglu & 
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FIGURE 1 .  Sketch of flow system. 

Pearlstein 1989). They have extended the method of proper orthogonal expansions to 
deal with statistically non-stationary flows and applied it to a time-periodically forced 
plane mixing layer. 

A new perspective for the use of the K-L expansion in fluid dynamics is presented 
in Sirovich (1987a-c) where it suggested that it be used as a basis for low-dimensional 
dynamical approximations. This series of papers discusses the mathematical basis of 
the K-L decomposition and develop the method ofsnapshots for obtaining a complete 
set of orthonormal empirical eigenfunctions which meet the boundary conditions and 
appropriate side conditions. Procedures for developing a system of dynamical 
equations, employing the eigenfunctions obtained, to follow the turbulent evolution of 
the flow have been presented (Sirovich 1987a-c, 1989). Sirovich & Rodrigues (1987) 
used this approach to show that low-dimensional dynamics could be achieved for 
chaotic motions governed by the Ginzburg-Landau equation over a wide parameter 
set. In an independent study Aubry et al. (1988) applied similar ideas to the study of 
the near-wall region of turbulent pipe flow using the experimentally determined 
eigenfunctions of Herzog (1986). Sirovich, Kirby & Winter (1990) applied the K-L 
procedure to the analysis of digitally imaged two-dimensional gas concentration fields 
obtained for a seeded axisymmetric jet. It has also been applied to turbulent thermal 
convection (Sirovich, Maxey & Tarman 1987) as well as to low-dimensional 
descriptions of other complicated phenomena (Sirovich & Sirovich 1989). Kawakubo 
(1990) also applied the K-L expansion to the direct simulation result of a turbulent 
mixing layer with substantial agreement with our earlier results (Rajaee & Karlsson 
1990). 

We use the snapshot form of the Karhunen-Lokve procedure for analysing the hot- 
wire free-shear measurements in order to describe the flow structures in terms of a low- 
dimensional basis set of empirical eigenfunctions. This basis set will then be used to 
develop a low-dimensional system of dynamical equations. The solution of this system 
of dynamic equations will be compared with the direct projections of flow realizations 
on this basis set of eigenfunctions. The good agreement of the solution of the system 
of dynamical equations with the direct projection results is a promising indication that 
the dynamical equations may be used to explore the turbulent evolution of the flow. 
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2. Experimental facilities and procedure 
2.1. Experimental facilities 

The experimental set-up is the same as the one described in the recent paper by Rajaee 
& Karlsson (1992). A closed-return low-speed wind tunnel, a portion of which is 
sketched in figure 1, is used to provide a free-shear-layer experimental facility. The flow 
is divided into two streams of high- and low-speed sections by a splitter plate, extending 
throughout the settling and contraction chambers, with its sharp trailing edge at the 
beginning of the test section. The high and low speeds are controlled by adjusting the 
variable-density screens, located at the leading edge of the splitter plate. The mean 
velocity of the high- and low-speed streams, Ul and U2, are chosen as 5.8 and 3.0 m/s, 
respectively. The velocity ratio, defined as R = (U, - &)/( U, + &), is then 0.32. The 
momentum thickness of the shear layer where the wake of the splitter plate has just 
disappeared is 8, = 0.99 mm, based on the definition of 

by Huang & Ho (1990). The natural instability frequency in our experiment, with the 
above high and low free-stream velocities and the initial momentum thickness Bo, is 
136 Hz, as predicted by the linear theory (Monkewitz & Huerre 1982; Michalke & 
Hermann 1982). The corresponding natural instability wavelength is measured as 
A, = 3.25 cm. The flow Reynolds number based on half the sum of the free-stream 
velocities and half the initial maximum shear thickness on the high-speed side, 
8, = 1.25 mm measured at X = 2 mm downstream of the splitter plate edge, is approxi- 
mately 360. The internal dimensions of the test section are 57 cm high, 81 cm wide, 
and 380 cm long. The horizontal splitter plate divides the inlet area into two equal 
sections. Careful design of the new settling chamber has provided a low initial 
turbulence level of 0.03% of the higher Cree-stream velocity. As discussed in the 
previous paper, this free shear flow is predominantly two-dimensional. 

Two-dimensional excitation of the shear flow is achieved by acoustic means. A single 
8 in. diameter loudspeaker, connected by a constant-cross-sectional-area transition 
piece to a transverse slot in the floor at the beginning of the test section is capable of 
generating two-dimensional disturbances of any desired frequency in the range of 
interest. The speaker is driven by a computer-generated signal consisting of two 
superimposed sine waves : the fundamental, which equals the unstable natural 
frequency, and its first subharmonic with a desired phase difference. Two- 
dimensionality of the generated perturbation was examined by velocity correlation 
measurements between a stationary probe at the centre of the trailing edge of the 
splitter plate, X = 1 cm, Y = 2 mm, Z = 0, and a probe traversing in the Z-direction. 
The correlation coefficient dropped to 0.70 at Z = 20 cm. It should be kept in mind 
that the fluctuation level at this X-location is very low. With a low-pass filter with the 
cut-off at 40 Hz this correlation became 0.85, corresponding to a phase shift in the 
imposed perturbation of approximately 32". With a loudspeaker driving r.m.s. voltage 
amplitude of 1.5 V, the observed r.m.s. velocity fluctuation level at the trailing edge of 
the splitter plate was measured to be 0.4 % of the average of the free-stream velocities. 
One X-probe hot-wire anemometer is used which can be traversed in both streamwise 
and transverse directions with a spatial resolution of 0.0005 in. 

Following our previous work one experiment is done for the case of distinct pairing 
vortex interaction, i.e. corresponding to the initial phase angle difference of 270" 
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between the subharmonic and the fundamental sine-wave components of the driving 
signal, which is found to be suppressing the flow three-dimensionality. 

2.2. Composite snapshots 

The measurements are made between X = 10 and 35 cm and between Y = 6 and 
-6 cm in 1 mm intervals for both directions at the total of (251 x 121) locations. At 
each location fi of a second of data are taken from the X-probe hot wires as well as 
the subharmonic component of the driving signal at the sampling rate of 3060 sC1, a 
multiple of 68 Hz which is the frequency of the subharmonic component of the driving 
signal. The high sampling rate is required to increase the accuracy, but we are 
constrained by the large disk space requirement, since a certain length of time should 
be covered, for storing the data for further processing. If sufficient number of data 
points with a fine time interval between them are used, most of the events due to the 
motion of coherent and non-coherent structures can be captured and this is the 
important issue that has been considered in this experiment. At each location data 
acquisition starts at a reference time, i.e. the zero crossing with the positive slope on 
a cycle of the subharmonic component of the driving signal, and continues for &, of a 
second, equivalent to more than 12 periods of the subharmonic component of the 
driving signal. 

There is a maximum inaccuracy of 1/3059, i.e. less than 3 x s, in the start of data 
acquisition which is corrected by interpolating and shifting the data points for the right 
starting time. The correction scheme is based on the following. 

Consider the subharmonic component of the driving signal, which is a sine wave. 
The optimal start of the data acquisition is the exact time of zero crossing. However, 
there may not be a data point sampled at that specific time. Figure 2 shows the sampled 
subharmonic component of the driving signal and the corresponding hot-wire signal at 
the location of X = 35 cm and Y = 0, both collected at the same time. Consider E,U to 
be the hot-wire signal after the zero crossing time, E,O the hot-wire signal before the zero 
crossing and the corresponding sampled values for the subharmonic component of the 
driving signal to be r: and ry, respectively. At the zero crossing time, one could 
interpolate for the value of the hot-wire signal, E", from the following relation: 

where ro = 0, the zero crossing of the driving signal's subharmonic component. Thus, 

Therefore, all the sampled data points must be shifted back by a correction factor, to 
reduce the formerly mentioned inaccuracy of the starting time of data acquisition. The 
correction factor is Cr = r i / ( r i  - ry) times the difference of the current measured value, 
which needs to be shifted, and the measured value at the preceding sampling time, i.e. 

E" = E,"-Cr(Ei-E,O). ( 5 )  

In figure 2(a) one may note some lack of periodicity at the subharmonic frequency. 
We should remember that hot-wire measurements in this plot must first be corrected 
by the above-mentioned scheme for the experimental error at the zero crossing of the 
driving signal (figure 2b). The observed lack of periodicity is most revealing at the zero 
crossing phase. These sample measurements are made at the most sensitive location in 
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FIGURE 2.  (a) Hot-wire measurements at X =  35 cm, Y = 0, and (b) the sampled subharmonic 
component of the driving signal, illustrating the concept of conditional sampling for producing the 
composite snapshots. 

the flow region where there are growing irregularities in the flow due to phase jitter and 
small-scale structures which start developing in the pairing region. Also, it should be 
kept in mind that there are contributions from other instability modes than the 
subharmonic mode, as well as high-frequency fluctuations superimposed on the 
subharmonic mode, which cause the hot-wire data to appear to have a lack of 
periodicity at the subharmonic frequency. At X = 35 cm, Y = 0, the cross-correlation 
between the subharmonic component of the driving signal and the velocity fluctuations 
is about 0.8 at the zero crossing and very close to 1 at the maximum, or minimum, 
amplitude phase of the subharmonic component of the driving signal, using the short 
time measurements. This estimate reveals the extent of phase locking at the most 
dangerous location in the flow region under consideration. 

Assuming flow stationarity in a time frame, phase locked with the driving signal, 
composite snapshots are produced using the data acquired in the above-mentioned 
time frame (Rajaee & Karlsson 1990). Corresponding to each specific time, or phase, 
there is a composite snapshot of the flow field starting at to, the start of data collection 
at the formerly mentioned zero crossing time. The continuity is checked by comparing 
the inflow and the outflow fr0.m all the boundaries of the flow region between any two 
streamwise locations. The difference between the inflow and the outflow, for any flow 
region between any two streamwise locations, is normalized with the inflow from the 
left cross-section of the flow region at X = 10 cm downstream of the splitter-plate 
trailing edge. The difference of outflow and inflow is at most 1.1 %; that is, the 
accuracy in satisfying the two-dimensional continuity equation is at least 98.9 %. 
Therefore, composite snapshots prove to satisfy the two-dimensional continuity 
equation with a high accuracy, a necessary condition to regard them as possible 
representations for an appropriate instantaneous one. 

The composite snapshots are equal to the instantaneous ones for the purpose of 
extracting the large-scale coherent flow structures. Here, 540 composite snapshots, 
equivalent to the number of samples taken in 12 cycles of the subharmonic wave, are 
considered for the eigenvalue problem, equation (1). The streamwise extent of the flow 
field studied is about four wavelengths of the subharmonic instability wave. Therefore, 
the number of snapshots being used is generously sufficient for the eigenfunction 
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computation. The method of snapshots (Sirovich 1987) is used to solve for the empirical 
eigenfunctions. 

3. Empirical eigenfunctions 
As discussed, the K-L procedure will be applied to the hot-wire measurements to 

identify the organized motions, or coherent structures, in the shear flow. In this regard, 
the snapshotform of the K-L expansion is applied to the free-shear-flow measurements. 
The calculations of the empirical eigenfunctions for highly resolved flows, such as we 
have here, present difficulties when approached directly and in fact are not manageable. 
The method of snapshots was developed to solve this problem. A brief discussion of the 
method which is applied to our experimental data now follows. 

3.1. Construction of the coherent structures via the method of snapshots 
Consider snapshots of the flow field represented by 

dn) = v(x, tn),  (6) 
where v represents the velocity field, which can be expressed by the summation of the 
time-averaged part, V, and the fluctuating part, v’, i.e. 

v(x, t )  = V(x) + v’(x, t).  (7) 

It should be noted that v refers to all velocity components, i.e. here, for our two- 
dimensional flow, it refers to the streamwise and transverse components. Then we can 
write the two-point velocity correlations as 

1 M 
I 

K(x, x’) = lim - C. v , ( x )  vn(x’), 
M*m ~4 n=1 

where u, = v’(x, t,) and the t ,  are the uniform sampling times. If the sampling duration 
is sufficiently large the kernel, K, can be approximated by 

1 Lw 
K(x ,  x’) = - c v,(x) vn(x’). 

M n=1 
(9) 

The kernel, K, as represented by (9) is degenerate and as a result has eigenfunctions in 
the form 

M 

y =  c A,%, (10) 
k-1 

where the constants A,  are to be found. By substituting (9) and (10) into the eigenvalue 
equation, (l), we obtain 

C A  = AA, (1 1) 

where A = (Al, .  . . 1 A,) (12) 

and 

In the above, (,) is the inner product integrated over the spatial domain of the flow 
field, i.e. 

(a, b) = 1% a, bi dx dy. (14) 
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FIGURE 3. Two composite snapshots at t , ,  and 145. 

Solution of the matrix eigenvalue problem (1 1) yields the eigenvalues, A, representing 
the energy associated with the modes, and from (lo), the eigenfunctions of K which 
depend on the spatial coordinates only. These fit the boundary conditions of the 
problem and for incompressible flow also satisfy the continuity equation. We can 
therefore expand the velocity fluctuations, u', in this set, 

where the time-dependent coefficients in this expansion, a,(t), are still to be computed. 
The N-term finite approximation of the velocity fluctuation is 

N 

v x  = z a,(O Yn(4> 
n=l 

truncated at N modes. 

3.2. Application to the experimental data 
Figure 3 shows the velocity vector fields of two composite snapshots at the reference 
times of t,, and t45 in the formerly mentioned time frame of the subharmonic 
component of the driving signal, viewed from a coordinate system moving with one- 
half the sum of the free-stream velocities. In this time frame tn+l - t ,  = 1/3059 s. Thus 
t,, represents the flow after one period of the subharmonic instability wave. 
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FIGURE 4. The energy content, sum of the eigenvalues, versus the number of modes. 

hi 
0.2926 
0.2884 
0. I502 
0.1461 
0.0293 
0.0288 
0.0130 
0.0124 

i 4 
9 0.0031 

10 0.0029 
1 1  0.00134 
12 0.00131 
13 0.001 1 
14 0.00107 
15 0.00105 
16 0.00101 

TABLE 1 I The first 16 eigenvalues 

540 composite snapshots are used to compute the basis set of orthonormal 
eigenfunctions. This is provided by the solution of a 540x540 matrix eigenvalue 
problem, equation (1 l), which produces the eigenvectors. These eigenvectors are then 
substituted in (10) resulting in 540 eigenfunctions in two components corresponding to 
the streamwise and transverse components of the velocity field. The energy associated 
with different eigenfunctions is represented in their corresponding eigenvalue, A. 

Table 1 lists the eigenvalues of the first 16 modes. Figure 4 shows the energy content, 
summation of eigenvalues, versus the number of eigenmodes in the summation. It is 
shown that the first four modes contain more than 87% of the fluctuation energy in 
this flow region. The first eight modes contain more than 96% of the fluctuation 
energy. The remaining eight modes just contain 1.3 % of the fluctuation energy. 

To aid in the understanding of the coherent structures associated with the first four 
eigenfunctions we show these by means of colour graphics. Figure 5 presents the 
vertical components of the first four eigenfunctions. The dark red regions represent 
the maximum positive value, upward flow, and the dark blue regions represent the 
maximum negative value, downward flow. Modes 1 and 2 represent structures 
associated with the subharmonic instability wave, i.e. the projection of the shear-flow 
velocity fluctuations on these eigenfunctions has a periodic sine-wave form corre- 
sponding to the subharmonic instability wave (figure 60). 
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Mode 1 

Mode 2 

Mode 3 

Mode 4 
FIGURE 5. The mode 1, 2, 3, and 4 eigenfunctions, vertical component. 

The first two empirical eigenfunctions are to a good approximation quarter-wave 
translates of one another in the streamwise direction. This wavelength shift observed 
in the eigenmode pairs is the natural outcome of the K-L procedure on the flow and 
a consequence of near translational invariance in the streamwise direction. The 
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FIGURE 6. Projection of experimental velocity fluctuations on the eigenfunctions of: 
(a) modes 1 and 2, (b) modes 3 and 4, (c) modes 5 and 6, ( d )  modes 7 and 8. 

structures first attain an acute angle with the negative streamwise direction, and with 
this orientation the work of positive Reynolds stresses of the corresponding disturbance 
field against the positive rate of strain of the mean flow results in the transfer of energy 
from the mean flow to the disturbance field of the first two modes. Thus the energy of 
these two modes reaches its maximum at the streamwise location of the vertical 
alignment of these structures, i.e. the subharmonic saturation. Note that the contour 
plots of u (vertical component of the eigenfunction) give an impression of the 
corresponding stream function (v cc ~ for a travelling wave) and the net energy 
production is zero if the v-contours are symmetric in y ,  which is nearly the case at the 
location of vertical alignment of the structures, but not elsewhere. However, following 
their vertical alignment the structures of the first two modes tilt in an acute angle with 
the positive streamwise direction which in an opposite fashion results in the return of 
energy from the corresponding disturbance field to the mean flow. The physics of this 
interaction has been discussed by Mollo-Christensen (1 97 1). 

We note in figures 6(a) and 5 that mode 1 leads mode 2 by +IT in time but lags it a 
quarter-wavelength in space. We know that the structures represented by the 
eigenfunctions are fixed in space. However, when one mode, in the pair, is in the 
maximum energy state the other is in the minimum energy stage and this relation 
reverses after one quarter of a period in time. That is, the energy is exchanged between 
the two modes thereby propagating the flow pattern consisting of the sum of the two 
in the positive streamwise direction. 

Figure 5 also presents the normal components of the second pair of eigenfunctions, 
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Mode 5 

Mode 6 

FIGURE 7. The mode 5 and 6 eigenfunctions, vertical component. 

modes 3 and 4. These two modes represent the structures associated with the 
fundamental instability wave, i.e. the projection of the shear-flow velocity fluctuations 
on these eigenfunctions has a periodic sine-wave form corresponding to the 
fundamental instability wave (figure 6b).  We also note that mode 4 leads mode 3 by 
in in time (figure 6b) and lags it a quarter-wavelength in space (figure 5) ,  showing 
quasi-translationally invariant behaviour in the streamwise direction. These modes are 
already saturated in the upstream flow region under consideration, i.e. 10 to 13 cm 
downstream of the splitter-plate edge, and lose their energy thereafter. 

In the upstream region the structures are vertically aligned where they are in their 
maximum state of energy. The structures are then tilted at an acute angle with the 
positive streamwise direction with the result that they lose energy to the mean flow, and 
split into two smaller structures, one in the high-speed region of the shear flow 
convecting faster than the other in the lower speed region. This results in two structures 
with the same frequency but different wavelengths and wave speeds. We refer to this 
interesting phenomenon as the ‘mode degeneration’ process which was already 
indicated in the Fourier space analysis (see Rajaee & Karlsson 1992) and is clearly 
revealed in these figures. This phenomenon was observed in the field of the 
fundamental instability wave and its higher harmonics, including the instability waves 
resulting from the nonlinear interaction of the fundamental instability wave with its 
first subharmonic and nonlinear interaction of the fundamental instability wave with 
itself. Therefore, we expect to observe this phenomenon for the structures associated 
with the eigenfunctions corresponding to the fundamental instability wave and its 
higher harmonics. That is, we expect similar behaviour from the structures associated 
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Mode 7 

Mode 8 

FIGURE 8. The mode 7 and 8 eigenfunctions, vertical component. 

with the eigenfunctions of modes 3 and higher. The mode degeneration phenomenon 
enhances entrainment and mixing. 

For the third pair of eigenfunctions, in figure 7, representing three times the 
subharmonic instability mode, the two wavenumber structures are also observed. The 
energy of these modes peaks at a location downstream of the maximum energy location 
of the third and fourth modes before the structures tilt at an acute angle with the 
positive streamwise direction. Farther downstream the structures evolve to the two 
wavenumber structures with two wave speeds. Direct projection of velocity 
fluctuations, from the snapshots, on this pair of eigenfunctions results in two sine 
waves with the frequency of three times the subharmonic instability wave and a $I 
phase difference in time (figure 6c). This wave with frequency three times that of the 
subharmonic instability wave is the result of the nonlinear interaction of subharmonic 
and fundamental instability waves, thus we can infer that the structures of modes 5 and 
6 are the results of nonlinear interactions of the structures of modes 3 and 4 with those 
of modes 1 and 2. Further study of figure 7 reveals that the location of maximum 
energy content of modes 5 and 6 is approximately between the maximum energy 
locations of modes 1 ,  2 and those of modes 3 ,  4. 

Furthermore, figure 8, representing the normal components of eigenfunctions 7 and 
8, corresponding to the first-harmonic instability wave, reveals that the maximum 
energy locations of modes 7 and 8 coincide with those of modes 3 and 4, clarifying the 
relation between modes 7, 8 and modes 3 ,  4. This is because the first-harmonic 
instability wave, represented by modes 7 and 8, is the result of nonlinear interaction of 
the fundamental instability wave, represented by the eigenmodes 3 and 4, with itself. 

F L M  258 2 
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Mode 9 

Mode 10 

FIGURE 9. The mode 9 and 10 eigenfunctions, vertical component. 

The two-wave mode structures of modes 7 and 8 are also observed in figure 8. Figure 
6(d )  shows the result of the projection of velocity fluctuations on this pair of 
eigenfunctions. Again, the +TC phase difference in time, between the modes, is clearly 
revealed here. 

Figure 9 shows the normal components of the eigenfunctions of modes 9 and 10, 
which further analysis shows to represent five times the subharmonic instability wave. 
Even by comparing the number of structures of modes 1 and 2, representing the 
subharmonic instability wave, with those of modes 9 and 10, one could infer that the 
structures of modes 9, 10 represent fives times the subharmonic instability wave. From 
table 1, it is noted that modes 9 and 10 each contain less than 1 % of the energy of the 
first or the second mode. The modes of number higher than 10, in table 1, each contain 
about one-third of the energy of mode 10 and, while being insignificant, show regular 
structures but mostly appear to include the jitter of the regular structures at the 
frequencies of the subharmonic instability wave and its higher harmonics, as shown by 
modes 11-13 and 15 in figures 10-12. This claim will be clarified by further spectral 
analysis of the time-dependent K-L expansion coefficients. By comparing the 
wavelength of the structures of modes 14 and 16 with those of modes 3 and 4, 
representing the fundamental instability wave, one finds that they correspond to three 
times the wavenumber of the fundamental instability wave. 
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Mode 11 

Mode 12 

FIGURE 10. The mode 11 and 12 eigenfunctions, vertical component. 

4. Dynamics of coherent structures 
4.1. General oiew 

By studying the dynamics of coherent structures one can attempt to follow the 
behaviour and evolution of the flow field. 

Following the computations of a complete set of vector eigenfunctions, we can 
approximate the velocity field by its N-term expansion in this set of eigenfunctions, i.e. 

N 

V ( X , Y ?  0 = C ( X , Y ) +  c a,(4 Y,(X,?.’), 
n=l 

which we substitute into the Navier-Stokes equation, written symbolically as 

av 
- = D(v). 
at 

The Galerkin approximation to (18), of order N ,  is obtained by substituting 
N 

vN = V+ C a, Y, 
k = l  

into (18) and projecting onto the truncated space, 

( Y , , f 2 - D ( v N )  = 0, k =  1 ,..., N ,  11 
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Mode 13 

Mode 14 

FIGURE 11. The mode 13 and 14 eigenfunctions, vertical component. 

where 4 is at most cubic in the coefficients a. This procedure provides a practical 
procedure for following the turbulent evolution of the flow. In the event of turbulent 
flow it is necessary to introduce an cddy viscosity to account for the neglected modes 
(Aubry et al. 1988; Zhou & Sirovich (1992). 

4.2. Dynamics of free-shear-flow coherent structures 
The above approach for following the dynamics of coherent structures can be applied 
to the free-shear flow, but with some fine print. In projecting the Navier-Stokes (N-S) 
equation along the computed eigenfunctions difficulties are encountered in treating the 
pressure gradient and because 4 depends functionally on the mean flow, 8. To address 
these problems we consider the timc-averaged N-S equation. Except in the immediate 
vicinity of the splitter-plate trailing edge, the viscous term in the N-S equation for the 
shear flow in the wind tunnel is insignificant and neglected,? 

av 
-++.vv+vp = 0, 
at  

t Inclusion of the viscous term makes very little change to the solution of the system of dynamical 
equations. However, it could introduce errors due to the second-order numerical differencing of the 
empirical eigenfunctions. Figure 13 compares the first-order numerical differencing schemes with the 
corresponding analytical one, with a grid spacing equivalent to the 1 mm spacing in the experiment, 
see $4.3. 
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Mode 15 

Mode 16 

FIGURE 12. The mode 15 and 16 eigenfunctions, vertical component. 

where v refers to both mean and fluctuation velocity components, i.e. 

u = v+v’. (23) 
Substituting (23) in (22)  and subtracting the time-averaged (22) from (22) itself results 
in 

(24) 
3V’  -+ v’. VD+ v. VV’+ u’. VV’- v’. VV’ = - Vp’, 
at 

where p’ refers to the pressure fluctuation. Substitution of the N-term approximation 
to the velocity fluctuation, (16), results in 

with the summation convention on n and m. Next (25) is projected along the 
eigenfunctions, i.e. 

with the summation convention on i, n and m. Equation (26) can be put in the form 

da, -+ Bkna, + Cknn‘(an a ,  -a,) = Dk, 
d t  
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where Bkn = ($;c, (V. V$:$ + Y,. V.”)), (28) 

and for the moment we regard v as a known function. Also 

and 

Using the divergence theorem and the fact that each of the eigenfunctions satisfies the 
continuity, we obtain 

= -ll(V.@. Y,) -p’ (V-  Yk))dxdy 

= - fn’  I&,’ ds, (3 1) 

so that Dk depends only on the flow at the boundaries. In the following we will take 

Dk x 0. 

This obtains if for example n. Yk = 0 on the boundaries or if the pressure fluctuation 
vanishes there, or some combination of these occurs. 

Consequently the system of dynamical equations we consider is given by 

du, 
~ + Bknan + Cknm(un a, - a,, 3) = 0, dt 

- 

using the fact that the modes are uncorrelated, i.e. a,u, = S,,, u i  , where anm is the 
Kronecker delta. With the solution of this system of dynamical equations, the 
dynamics of coherent structures can be studied which, with further analytical work, 
results in a procedure for following the turbulent evolution of the shear flow. 

4.3. Solution of the system of dynamical equations 

The computed eigenfunctions are used to obtain the constant coefficients of the 
dynamical equations, i.e. Bk* and Cknm, from (28) and (29). The first sixteen modes, 
each with energy percentage 2 0.1 % of the total two-dimensional fluctuation energy, 
are considered for the system of dynamical equations to include all the significant 
harmonics of the subharmonic instability wave. A system of sixteen equations with 
sixteen unknowns is solved, (32), using the experimental initial condition for the 
u,(t = 0), i.e. from the direct projection of the first snapshot, at t = 0, on the eigen- 
functions. The fourth-order Runge-Kutta scheme, for the explicit integration, is used 
with the running-time-average term. The code is tested for numerical dissipation 
with different time steps and is seen not to be a dissipative scheme. The time step used 
in this simulation is the same as the time interval between the experiment snapshots so 
that the experimental a,(t) from direct projection of snapshots on the eigenfunctions 
can be compared to the simulation results, from (32). 

The experiment was performed with a relatively dense grid spacing in order to 
improve the accuracy of the spatial differencing scheme, but it is difficult to eliminate 
differencing errors. A two-point differencing scheme is used for the boundary locations, 
a three-point scheme for the immediate neighbouring nodes of the boundary nodes and 
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FIGURE 13. Comparing three-, four- and five-point differencing schemes with the corresponding 
analytical differencing. 

a five-point scheme for all the other grid nodes in the flow region (see the Appendix). 
In order to have a feeling for the accuracy of the numerical differencing scheme a 
numerical test was done. An analytical signal composed of four sine-waves with the 
wavenumbers of the subharmonic instability wave and its three higher harmonics is 
chosen, approximately simulating the first four pairs of eigenfunctions with amplitude 
ratios proportional to their eigenvalues and with arbitrary phase differences. The grid 
spacing in this simulation is equivalent to that of the shear-flow experiment. Figure 13 
compares the analytical differencing result with those of the three-, four- and five-point 
numerical differencing schemes. The results from three-, four- and five-point 
differencing schemes are close and cannot be distinguished in the plot. It is quite 
revealing that there is some error. This error could result in some inaccuracy in the 
solution of the system of dynamical equations. 

The computed a,(t) are compared to the direct projection results in figure 14(a-d) 
for the first 16 modes. There is a second frequency, a low-frequency modulation, 
observed in the simulation results which could be due to error in computing the 
constant coefficients of the dynamical equations, i.e. Bkn and Clcnm, This is the 
consequence of the error in the numerical differencing scheme. Also, since the mean 
flow velocity is a time average, or ensemble average over the number of snapshots, i.e. 
540 snapshots taken in less than 0.2 s, it could be possible that the mean flow estimate 
for the small transverse component includes some inaccuracy which could in turn cause 
an error in B". 

Figure 14(a-d) shows that the simulation solid lines, obtained by solving the system 
of dynamical equations compare reasonably well with the direct projections of 
snapshots on the eigenfunctions, the dotted lines. For the first pair of most energetic 
modes in particular, with the sum of more than 58% of the fluctuation energy, the 
results from the dynamical equations are close to the direct projection results. The 
presence of a low-frequency modulation is more obvious in the results of higher- 
frequency modes, specially the second pair of modes. The frequency response of the 
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solution is not exactly the same as the one from the direct projection of snapshots on 
the eigenfunctions. The error in the frequency response is caused by the error in the 
constant coefficients of the dynamical equations, mostly because of the error in Bkn 
which could be a consequence of the numerical differencing error in computing the 
derivatives of the mean flow and the eigenfunctions. 

From table 1 it is noted that the first eight modes contain more than 96% of the 
fluctuation energy while the next eight modes contain only 1.3 % of the energy. Thus, 
it would seem that if only the first eight modes are considered the results should be 
almost the same as the case of sixteen modes. However, as figure 15(a, b) shows, there 
are some differences between the results from considering eight modes in the system of 
dynamical equations and the ones from sixteen modes (figure 14) which appear mostly 
in modes 5 and 6. It appears that the second eight modes, 9-16, while not being that 
significant from an energy content point of view, are dynamically more active than 
their eigenvalues suggest because they include higher-frequency disturbances. As later 
spectral plots will show, the second eight modes not only contain hgher harmonics of 
fundamental and subharmonic modes, such as five times the subharmonic and six times 
the subharmonic instability waves, but also contain contributions at the subharmonic 
frequency and its three higher harmonics. Therefore, when only the first eight modes 
are considered in the system of dynamical equations, there is only a slight affect in the 
solutions for the first four modes corresponding to the subharmonic and fundamental 
instability waves, but there is a dominant growing effect in the fifth and sixth modes, 
figure 15 (b). Apparently, when considered in this way, a part of the mean flow energy 
which could be transferred to the second eight modes is fed to the fifth and sixth modes. 
The following discussion will reveal that most of the fluctuation energy at the 
frequencies of the subharmonic and its significant higher harmonics, including jitter, 
will be included by considering the first sixteen modes in the system of dynamical 
equations. 

The spectral analysis of the experimental an(t) values is shown in figure 16(a-d), and 
it should be noted that the scale is logarithmic. It reveals that each pair of neighbouring 
modes of almost equal energy, or eigenvalues, represents one hydrodynamic instability 
wave, i.e. the first pair including modes 1 and 2 represents the subharmonic, the second 
pair including the third and fourth modes represents the fundamental and the other 
pairs represent higher harmonics of the subharmonic. This is true for the first five pairs. 
The spectral analysis of modes 11, 12 from the sixth pair, figure 16(c), shows that the 
time-dependent K-L expansion coefficients, corresponding to these eigenfunctions, 
have dominantly the frequency of the fundamental instability wave. The corresponding 
eigenfunctions, figure 10, with the eigenvalues each representing about 0.1 % of the 
energy of the total fluctuation energy, show. although somewhat diffusely. structures 
with the wavelengths of modes 3 and 4. This weak energy structure apparently shows 
the contribution of the phase jitter of the fundamental instability wave occurring with 
a frequency equal to six times the subharmonic, which cannot be represented by modes 
3 and 4. The eigenfunction plots of modes 13-16 (figures 11 and 12) together with 
figures 14(d) and 16(d) reveal that modes 14 and 16 mostly rcpresent structures 
associated with six times the subharmonic instability wave. They also show that the 
structures associated with modes 13 and 15 contain relatively greater contributions 
from the subharmonic instability wave, which may represent the phase jitter of this 
wave at a frequency equal to six times the subharmonic, which cannot be represented 
by modes 1 and 2. 

The frequency response of the solution of the system of dynamical equations for the 
first eight higher energy modes are close to the corresponding direct projection of 
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FIGURE 16. Spectrum of (a) al ( t )  ... a,(& ( b )  u5(l). . .u8(t),  (c) ag(t) ... a,,(t), (d )  a,,(t) ... a,,(t); 
direct projection results. 

snapshots on the eigenfunctions. Even for the very low energy mode 9 and consecutive 
modes the solution of the system of dynamical equations are close to the direct 
projection results while the frequency response might not be satisfactory. In general the 
results are very encouraging despite the experimental constraints such as numerical 
differencing of the eigenfunctions and mean flow velocity as well as lack of experimental 
information regarding the pressure fluctuations at the right and left boundaries of the 
flow region. As discussed earlier, the slight error in the frequency response of the 
solution could be due to the error in the constant coefficients of the system of 
dynamical equations which are computed despite having the disadvantage of the 
formerly mentioned experimental constraints. However, the simulation results well 
describe the dynamical behaviour of the shear flow coherent structures associated with 
the principal eigenfunctions. 

4.4. Mean Jow simulation 
Next we address the question of determining the mean flow. The time averaged 
Navier-Stokes equations are given by 

I V . U =  0, 
(33) 
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Experiment 
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FIGURE 17. Velocity vector field of the mean flow, comparing the results of simulation with the 
experiment, where the mean pressure gradient is computed from the Navier-Stokes equations and 
used in the mean flow simulation. 

where the dissipation term is neglected because it is insignificant for this flow. The 
Reynolds stress term (alax,) (u,) can be computed from the computed set of empirical 
eigenfunctions and the simulation results of the system of dynamical equations, namely 

where $y(x ,y )  and $r(x ,y )  represent the eigenfunctions and a,(t> represents the time- 
dependent K-L expansion coefficients computed from the system of dynamical 
equations. In arriving at the final form of (34) we have used qq = 0, m $. n. 

From the mathematical point of view the solution of system (33) is straightforward, 
if U - n  is known on the boundaries of the domain. We assume that this is the case. In 
this sense we model the actual experimental situation. We take U . n  = 0 on the 
horizontal walls and U - n  given at the up and downstream vertical boundaries. (This 
is consistent with our earlier assumption that !Pan = 0 on boundaries.) The hope is that 
this will be a good enough model of the actual situation. 
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Equation (33) can be written for the streamwise and transverse directions in the 

(3 5)  

following form : 

a a u - v,+ u - u, = g(x,y), ax 8y 

where f ( x ,  y )  and g(x, y )  include the Reynolds stress and the mean pressure gradient 
terms. The subscripts 1 and 2 refer to the streamwise and transverse directions, 
respectively. Assuming that the pressure term is known, (35) and (36) can be solved by 
the method of characteristics. Thus 

Equation (37) is in fact three equations, one of which gives the equation for the 
characteristics lines, (38), while the other two, (39), provide the solutions for the mean 
flow velocity components on the characteristics lines, i.e. 

and (39) 

Equation (38) shows that the characteristics lines are in fact the mean flow 
streamlines. To solve (38) and (39) for the experiment with the equidistance grid nodes, 
it is convenient to advance in the streamwise direction one grid spacing step and 
compute for the transverse profile of the velocity field at that fixed streamwise location. 
However, the streamlines do not necessarily pass the equidistance grid nodes, therefore 
one has to interpolate for the velocity field at the equidistance nodes in the transverse 
direction and proceed for the next stcp in the streamwise direction. 

4.5. Mean flow computations 
A successful solution of the system of dynamical equations raises the hope that one 
might reconstruct the mean flow field from the simulated Reynolds stresses through the 
eigenfunctions and the a,(t) from the dynamical equations, and then by changing some 
flow parameter, e.g. Reynolds number, be able to predict flow variation. 

In order to check the accuracy of the numerical scheme for the mean flow 
computations by the method of characteristics, the mean pressure gradient is first 
computed from the Navier--Stokes equations, using the experimental velocity 
measurements, and used in the right-hand sides of (39), i.e. f and g .  The result is very 
close to the experimental mean flow. Figure 17 compares the mean flow simulation to 
the corresponding experimental result. Therefore, the numerical scheme, based on the 
method of characteristics, is shown to work. However, the problem of the lack of a 
mean pressure term remains to be solved. 

5. Summary and conclusions 
It is found that most of the fluctuation energy is carried by the first few modes in the 

empirical eigenfunction space obtained from the K-L expansion procedure. Therefore, 
a low-dimensional eigenfunction space is obtained which describes the shear-flow 
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coherent structures. Even the phase jitter associated with these large-scale structures 
can be captured by a few low-energy modes. Among the first few pairs of modes, each 
pair represents one hydrodynamic instability wave, one mode leading its companion in 
the pair by a quarter-wavelength in space, i.e. showing the characteristics of a 
translationally quasi-invariant flow, and lagging it a quarter-period in time. 

Projection of the Navier-Stokes equations on this basis set of principal eigenfunction 
modes results in a low-order system of dynamical equations. Solution of this system of 
equations describes the dynamics of the coherent structures associated with these 
eigenfunctions. The simulation, as obtained from the systcm of dynamical equations, 
compares well with the direct projections of the snapshots on the eigenfunctions. This 
is very encouraging. The successful solution of the system of dynamical equations as 
well as the preliminary mean flow simulation, although not quite successful due to the 
lack of mean pressure gradient, are promising indications of being able to use the 
computed set of principal eigenfunctions from the experiment and numerically, by 
changing some flow parameter, e.g. Reynolds number, follow the evolution of the 
shear flow. If Reynolds number R + R, the set of eigenfunctions, { Pn}, calculated for 
R,, are no longer, in general, the coherent structures of the flow. However, {u",) still 
form a complete orthonormal set satisfying the continuity equation. The calculated set 
{Ul",} might therefore be expected to be useful over a range of parameter space, R, or 
could be used to form a new basis set of eigenfunctions, { P,,), for a flow with a different 
Reynolds number. 

This work was supported by DARPA under ONR N00014-86-K0754. 

Appendix. The differencing scheme 
Both sets of coefficients, Bkn and Cknm, in the system of dynamical equations (32) 

involve spacial numerical differencing in the ( X ,  Y)-plane, and there are 251 x 121 grid 
points in the ( X ,  Y)-plane flow region. We take dx and dy to be the spacial grid spacing 
in the X- and Y-directions, respectively. In the experiment dx = dy = 1 mm. 

The spatial numerical differencing at the inner grid points is based on the five-point 
differencing scheme, i.e. 

The numerical differencing along the border grid points with the tangential gradient 
direction, except the four corners and the grid points next to them, is also based on 
the above-men tioned five-poin t scheme. 

The differencing at the border grid points with the normal gradient direction, as well 
as at the four corners of the flow region, is simply based on the two-point differencing 
scheme, i.e. 
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A three-point differencing scheme is used for the grid points next to the border grid 
points, with the normal gradient direction : 
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